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Abstract. In this note we give a brief survey on some classical and old
problems involving Minkowski’s successive minima of a 0-symmetric convex
body as well as on some recent developments concerning these functionals.
Among others we show that the successive minima are closely related to
intrinsic volumes, the lattice point enumerator, the zeros of the Ehrhart
polynomial and to simultaneous Diophantine approximation problems.

1. Introduction

One of the basic questions in geometry of numbers is to decide whether a
given set in the n-dimensional Euclidean space R

n contains a lattice point of
the intgeral lattice Z

n. With respect to the class Kn
0 of all 0-symmetric convex

bodies, i.e., convex compact subsets K ⊂ R
n with K = −K and dim(K) = n,

and the volume functional vol(·), Minkowski settled this problem [40, pp.75]:

(1.1) If vol(K) ≥ 2n then K contains a non-zero lattice point.

The n-cube Cn = {x ∈ Rn : |xi| ≤ 1, 1 ≤ i ≤ n} of volume 2n shows that, in
general, the constant 2n can not be replaced by a smaller one. Although the
proof of (1.1) is rather simple it has a lot of applications in different branches
of mathematics (cf., e.g., [27, pp. 40], [40, pp. 102]). Minkowski also proved an
important generalisation of (1.1) for which we have to introduce his successive
minima. For K ∈ Kn

0 and 1 ≤ i ≤ n the i-th successive minimum λi(K) is
defined by

λi(K) = min{λ > 0 : dim(λ K ∩ Z
n) ≥ i},

i.e., λi(K) K is the smallest dilate of K containing i linearly independent lattice
points. Obviously, λi(K) ≤ λi+1(K) and int(λ1(K) K)∩Zn = {0}, where int()
denotes the interior. Moreover, λi(K) is homogeneous of degree -1, which means
that λi(µ K) = (1/µ) λi(K) for any positive number µ. With this notation, (1.1)
can be equivalently reformulated as

Theorem 1.1 (Minkowski’s 1st theorem on successive minima). Let K ∈ Kn
0 .

Then

(1.2) vol(K) ≤
(

2

λ1(K)

)n

.
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To see that (1.1) and (1.2) are equivalent, we firstly note that for K ∈ Kn
0

with vol(K) ≥ 2n, (1.2) implies λ1(K) ≤ 1 and thus K must contain a non-
trivial lattice point. On the other hand, since int(λ1(K) K) ∩ Z

n = {0}, (1.1)
shows that vol(λ1(K) K) ≤ 2n and thus we get (1.2). The problem to classify
those bodies satisfying (1.2) with equality leads to the theory of extremal bodies
(see [27, pp. 82]).

As mentioned above, Minkowski proved a generalisation of (1.2) which is
given by the upper bound in the next theorem (cf. [40, pp. 187], [27, pp. 59]).

Theorem 1.2 (Minkowski’s 2nd theorem on successive minima). Let K ∈ Kn
0 .

Then

(1.3)
1

n!

n
∏

i=1

2

λi(K)
≤ vol(K) ≤

n
∏

i=1

2

λi(K)
.

Both bounds are best possible. For instance, the lower bound is attained by
the regular n-cross polytope C∗

n = {x ∈ Rn :
∑n

i=1 |xi| ≤ 1}. Here we have
vol(C∗

n) = 2n/n! and λi(C
∗
n) = 1, 1 ≤ i ≤ n. Of course, the upper bound is still

tight for the cube Cn, but also for arbitrary boxes Q with facets parallel to the
coordinate hyperplanes. For instance, let

(1.4) Q = {x ∈ R
n : |xi| ≤ αi, 1 ≤ i ≤ n}

where we may assume αi ≤ αi−1. Then λi(Q) = 1/αi and thus we have
equality in the upper bound. The lower bound is easy to prove. For if, choose
n-linearly independent lattice points zi such that zi ∈ λi(K) K, 1 ≤ i ≤ n.
Then K contains the cross polytope conv{±(1/λi(K)) zi : 1 ≤ i ≤ n} and
the volume of that cross polytope is at least as large as the left hand side in
(1.3). In contrast to the lower bound the upper bound is considered as a rather
deep result in geometry of numbers. This is also reflected by the fact that
many eminent mathematicians, e.g., Bambah, Woods, Zassenhaus, Davenport,
Siegel, Weyl, etc., tried to improve on Minkowski’s second theorem and gave
themselves interesting proofs (cf., e.g., [3, 15, 50, 55]). For a modern version of
Minkowski’s original proof we refer to [29].

The main purpose of this note is to give a brief survey on classical problems
concerning the successive minima of a 0-symmetric convex body and also to
show new developments and further relations of the successive minima to other
geometric functionals. We will state the results mainly with respect to the
standard lattice Z

n. Most of the results, however, can easily be generalised to
arbitrary lattices by a linear transformation.

At this point we also want to remark that Minkowski’s theory of successive
minima has been applied successfully in a much broader context than presented
here; we just mention the fields i) adelic geometry of numbers (cf. [54]), ii) pro-
jective toric varieties (cf. [51]) and iii) successive minima of indefinite quadratic
forms (cf. [4, 13, 21]).

The paper is organised as follows. In Section 2 we will study some classical
generalisation of Minkowski’s theorems. Then we want to point out relations
between the so called intrinsic volumes and the successive minima. In Section 4
we show that there are also bounds on the number of lattice points contained in
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a 0-symmetric convex body in terms of the successive minima. For the class of
0-symmetric lattice polytopes there seems to be even some interesting relations
between the coefficients of the so called Ehrhart polynomial and the successive
minima. This topic is the content of Section 5. Finally, in the last section
we show generalisation of Minkowski’s fundamental theorems in the context of
simultaneous Diophantine approximation problems.

2. Generalisations of Minkowski’s theorems

The most natural way to extend (1.1) is to ask for a general lower bound
on the the number of lattice points contained in K ∈ Kn

0 with respect to the
volume. Here we have the following result due to van der Corput [14], [27,
pp. 51]

Theorem 2.1 (van der Corput). Let K ∈ Kn
0 . Then

#(K ∩ Z
n) ≥ 2

⌊

vol(K)

2n

⌋

+ 1,

where bxc denotes the integral part of x ∈ R. In particular, if vol(K) ≥ 2n we
get (1.1). A generalisation of a different type is due to Siegel [49], [27, pp. 50]
which is based on Parseval’s identity for multiple Fourier series.

Theorem 2.2 (Siegel). Let K ∈ Kn
0 with intK ∩ Zn = {0}. Then

vol(K) +
vol(K)

4n

∑

z∈Zn\{0}

∣

∣

∣

∣

∣

∫

(1/2)K

e−2 πi z·x dx

∣

∣

∣

∣

∣

2

= 2n,

where x · y denotes the usual inner product on Rn. Since the second term
on the left hand side is non-negative Theorem 2.2 implies (1.1). In general,
however, it is difficult to evaluate the integral above and thus it is hard to take
advantage of this beautiful identity of Siegel.

In order to present a direct sharpening of (1.2) we need the notation of the
density of a densest lattice packing. For details we refer to [27, pp. 218]. A
lattice Λ ⊂ R

n is called a packing lattice of a set K ∈ Kn
0 if int(2 K)∩Λ = {0},

i.e., two different lattice translates a1 + K, a2 + K, a1 6= a2 ∈ Λ, have no
interior points in common. The density δ(K, Λ) of such a non-overlapping
lattice arrangement Λ + K is the proportion of space which is occupied by the
translates Λ + K, and it is given by

δ(K, Λ) =
vol(K)

det Λ
,

where det Λ denotes the determinant of the lattice. The maximum density
δ(K, Λ) with respect to all packing lattices Λ of K is called the density of a
densest lattice packing of K and it will be denoted by δ(K).

By the definition of the first successive minimum we know that Zn is a packing
lattice of the body (λ1(K)/2) K. Hence we have δ(K) ≥ vol((λ1(K)/2) K) or

(2.1) vol(K) ≤ δ(K)

(

2

λ1(K)

)n

.



4 MARTIN HENK AND JÖRG M. WILLS

Since δ(K) ≤ 1 the inequality above may be considered as an improvement of
(1.2), which, in particular, takes more into account the shape of the body K.
In view of the upper bound in (1.3) it is tempting to improve also (2.1) by
replacing (2/λ1(K))n with the product of the successive minima. This is the
content of a famous problem posed by Davenport [16].

Problem 2.3 (Davenport). Let K ∈ Kn
0 . Is it true that

(2.2) vol(K) ≤ δ(K)

n
∏

i=1

2

λi(K)
?

So far it has only been verified for n = 2 and for ellipsoids by Minkowski [40,
pp. 196], [27, pp. 195], the case n = 3 was settled by Woods [58]. His proof is
based on Minkowski’s classification of of so called critical lattices in dimension
3 which does not seem to be extendable to higher dimensions (cf. [41], [27,
pp. 340]).

For the more general class of ray sets of finite type Rogers and independently
Chabauty proved an inequality of type (2.2), but with an additional factor of

2(1/2)(n−1) on the right hand side. It was shown, however, by Mahler and
Chabauty that in this more general setting the additional factor is necessary
(cf. [27, pp. 188]).

There are various attempts to generalise Minkowski’s theorem to non-sym-
metric convex bodies (cf. [27, pp. 52]). Here we just want to mention a still
open and quite fascinating conjecture due to Ehrhart [22]

Conjecture 2.4 (Ehrhart). Let K ⊂ Rn be a convex body whose centre of

gravity is the origin. If vol(K) ≥ (n + 1)n/n! then K contains a non-trivial

lattice point.

This inequality would be tight as the n-dimensional simplex −1 + (n + 1)Tn

shows, where 1 =
∑n

i=1 ei denotes the all 1-vector, ei the i-th unit vector and
Tn = conv{0, e1, . . . , en+1} the standard simplex in R

n of volume 1/n!. So far
the conjecture has only be proven in the plane and for special 3-dimensional
convex bodies by Ehrhart [22].

3. Intrinsic volumes

Let Bi be the i-dimensional unit ball whose i-dimensional volume will be
denoted by κi. For a convex body K ⊂ Rn the outer parallel body at distance
ε > 0 is given by K + ε Bn, i.e., it consists of all points whose (Euclidean)
distance to K is at most ε. The volume of K + ε Bn is a polynomial of degree
n in ε, the so called Steiner-polynomial (cf. [48, pp. 197])

(3.1) vol(K + εBn) =

n
∑

i=0

εn−i κn−i Vi(K).

The coefficients Vi(K), i = 0, . . . , n, are the so called intrinsic volumes. They
are normalised Minkowskian Quermassintegrals and they were introduced by
Peter McMullen [39]. In particular, we have Vn(K) = vol(K), Vn−1(K) is one
half of the surface area F(K) and V0(K) = 1.
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Since the volume functional itself is an intrinsic volume and in view of (1.3)
one may ask for further inequalities involving the successive minima and other
intrinsic volumes. Concerning a lower bound we have the following generalisa-
tion of (1.3) [56]

Theorem 3.1 (W.). Let K ∈ Kn
0 . Then for 1 ≤ m ≤ n

1

m!

m
∏

i=1

2

λi(K)
≤ Vm(K).

This inequality is tight and for m = n we obtain the lower bound in (1.3).
In general, λ1(K) · . . . · λm(K) · Vm(K) can not be bounded from above by a
constant. Hence in order to find an extension of the upper bound in (1.3) to
other intrinsic volumes a different type of inequality is needed. Here we have
[28]

Theorem 3.2 (H.). Let K ∈ Kn
0 . Then for 0 ≤ m ≤ n − 1

vol(K) ≤ Vm(K)

n
∏

i=m+1

2

λi(K)
.

Again this inequality is best possible and for m = 0 we get Minkowski’s upper
bound in (1.3). Of particular interest and simplicity is the case m = n−1 which
says that

(3.2) λn(K) ≤ F(K)

vol(K)
.

So for λ bigger than the ratio of surface area to volume the dilate λ K contains
n-linearly interior lattice points. Finally we want to remark that it is an open
problem to generalise the theorems above to arbitrary lattices (cf. [26]).

4. Lattice point enumerator

By definition the successive minima measure or reflect a certain lattice point
property of a 0-symmetric convex body. Hence it is quite natural to look for
bounds on the lattice point enumerator G(K) = #(K ∩ Zn) in terms of the
successive minima. A result in this spirit is again due to Minkowski who proved
[40, p. 79]

Theorem 4.1 (Minkowski). Let K ∈ Kn
0 with λ1(K) ≥ 1, i.e., int(K) ∩ Zn =

{0}. Then

G(K) ≤ 3n.

The cube Cn shows that the bound can not be improved in general. Minkowski
also proved a sharper bound of 2n+1 − 1 for the class of strictly 0-symmetric
convex bodies, but for simplification we will deal only with the general case and
refer to [27, p. 63] for details. In [11] the above result was embedded in a more
general inequality, namely

Theorem 4.2 (Betke,H.,W.). Let K ∈ Kn
0 . Then

G(K) ≤
⌊

2

λ1(K)
+ 1

⌋n

.
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This inequality may be considered as a lattice point analogue of Minkowski’s
first Theorem 1.1. Roughly speaking, we have only replaced the volume by
the lattice point enumerator. Moreover, since K is a Jordan-measurable set we
have

(4.1) lim
m→∞

G(m K)

vol(m K)
= 1,

and thus Theorem 4.2 implies Minkowski’s first theorem. By the same reasoning
the following lower bound proved in [11] is a generalisation of the lower bound
in Minkowski’s second Theorem 1.2

(

1 − λ1(K)

2

)

1

n!

n
∏

i=1

2

λi(K)
≤ G(K).

Here we have additionally to assume that λ1(K) ≤ 1.
Of course, the most challenging problem is to give an analogue of the upper

bound in Minkowski’s second theorem but for that problem, unfortunately, we
only have a conjecture [11]

Conjecture 4.3 (Betke, H., W.). Let K ∈ Kn
0 . Then

G(K) ≤
n
∏

i=1

⌊

2

λi(K)
+ 1

⌋

.

As in Minkowski’s upper bound we have equality for boxes with facets parallel
to the coordinate axes (cf. (1.4)). So far this conjecture has only been verified
in the 2-dimensional case [11] and in the general case it is only known that [29]

G(K) ≤ 2n−1
n
∏

i=1

⌊

2

λi(K)
+ 1

⌋

.

Since the conjecture would imply Minkowski’s upper bound in (1.3) it seems to
be a rather hard problem.

Now we relax a little bit the right hand side in the conjecture and set

L(K) =
n
∏

i=1

(

2

λi(K)
+ 1

)

.

Since the successive minima are homogeneous of degree −1 we see that for any
positive number µ

(4.2) L(µ K) =

n
∏

i=1

(

2

λi(K)
µ + 1

)

is a polynomial of degree n in µ and Conjecture 4.3 relates this polynomial with
the lattice point enumerator of a 0-symmetric convex body. There is another
and quite famous polynomial related to the number of lattice points which will
be discussed in the next section.
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5. Ehrhart polynomials

In the following we will study the number of lattice points contained in
lattice polytopes, which in our setting are polytopes whose vertices belong to
the integral lattice Z

n. The space of all n-dimensional lattice polytopes in R
n

is denoted by Pn. In 1899 G. Pick [44] found the following beautiful identity
for lattice polygons

Theorem 5.1 (Pick). Let P ∈ P2. Then

G(P ) = vol(P ) +
1

2
G(bdP ) + 1,

where bd() denotes the boundary. The statement is also true for non-selfinter-
secting (and not necessarily convex) polygons. The proof of this theorem re-
lies heavily, as many other results on lattice points in the plane, on the 2-
dimensional fact that the area of any lattice triangle whose vertices are the
only lattice points is bounded. In fact, the volume is always 1/2. In higher
dimensions the so called Reeve simplices [46]

(5.1) Rn(m) = conv{0, e1, . . . , en−1, m
∑n

i=1
ei}, m ∈ N,

show that the volume of such a simplex may not be bounded at all.
Recently, M. Ram Murty and Nithum Thain [43] gave a nice proof of Pick’s

theorem via Minkowski’s theorem. Since for any integer k the dilate kP is again
a lattice polygon Pick’s theorem immediately implies

G(k P ) = vol(P ) k2 +
1

2
G(bdP ) k + 1,

G(int(k P )) = vol(P ) k2 − 1

2
G(bdP ) k + 1.

In the years 1962-1968 E. Ehrhart [23, 24, 25] generalised these identities to
all dimensions

Theorem 5.2 (Ehrhart). Let P ∈ Pn and k ∈ N. Then

G(k P ) =

n
∑

i=0

Gi(P ) ki,

G(int(k P )) = (−1)n
n
∑

i=0

Gi(P ) (−k)i,

where the coefficients Gi(P ) depends only on P .

The first identity is known as the Ehrhart polynomial and the second one is
called Ehrhart’s reciprocity law. Two of the n+1 coefficients Gi(P ) are obvious,
namely, G0(P ) = 1 and Gn(P ) = vol(P ). Also the second leading coefficient
admits a simple geometric interpretation via the facets F1, . . . , Fm of the lattice
polytope. Here we have (cf. [24])

(5.2) Gn−1(P ) =
1

2

m
∑

i=1

voln−1(Fi)

det(affFi ∩ Zn)
,



8 MARTIN HENK AND JÖRG M. WILLS

where voln−1() denotes the (n − 1)-dimensional volume and det(affFi ∩ Z
n)

denotes the determinant of the (n − 1)-dimensional sublattice of Z
n contained

in the affine hull of the facet Fi. So Gn−1(P ) may be regarded as the nor-
malised surface area of P with respect to Z

n and, obviously we have Gn−1(P ) ≤
(1/2) F(K).

All other coefficients Gi(P ), 1 ≤ i ≤ n − 2, have no such direct geometric
meaning, except for special classes of polytopes (cf., e.g., [9, 10, 20, 32, 38, 37,
42, 45]). Since its discovery the Ehrhart polynomial and its coefficients play an
essential role in discrete geometry, geometry of numbers and combinatorics (cf.,
e.g., [26, 27, 31, 36, 53]). For instance, in [12] Betke and Kneser showed that
the coefficients form a basis of all additive and unimodular invariant functionals
on the space Pn. Stanley studied the Hilbert series of an integral polytope and
proved in this context his famous non-negativity theorem [52]. For representa-
tions of Gi(P ) in terms of Todd classes of a toric variety associated with P we
refer to [7] and the references within. Based on Barvinok’s methods for counting
lattice points (cf., e.g., [5, 6]), De Loera et al. developed an efficient algorithm
for calculating the coefficients of the Ehrhart polynomial (cf. [18, 19]).

Before we present a relation between the coefficients of the Ehrhart polyno-
mial and the successive minima we give some examples of Ehrhart polynomials.
For the 3-dimensional Reeve simplex R3(m) (cf. (5.1)) we obtain by calculating
the lattice points in k R3(m), k = 1, 2, 3, that

G(k R3(m)) =
m

6
k3 + k2 +

12− m

6
k + 1.

In particular, this shows that some of the Gi’s might be negative. For the
simplex Tn = conv{0, e1, . . . , en} and the cross-polytope C?

n one easily finds

G(k Tn) =

(

n + k

n

)

, G(k C∗
n) =

n
∑

i=0

2i

(

n

i

)(

k

i

)

.

If Q is a lattice box defined via integers αi (cf. (1.4)) we have

(5.3) G(k Q) =

n
∏

i=1

(1 + 2 αi k)

and, in particular, for the cube Cn we obtain

Gi(Cn) = 2n−i

(

n

i

)

.

In recent years the Ehrhart polynomial was not only regarded as a polynomial
for integers k, but as a formal polynomial of a complex variable s ∈ C (cf. [8,
47, 57]). Therefore, for P ∈ Pn and s ∈ C we set

G(s, P ) =

n
∑

i=0

Gi(P ) si =

n
∏

i=1

(

1 +
s

γi(P )

)

,

where −γi(P ) ∈ C, 1 ≤ i ≤ n, are the roots of the Ehrhart polynomial G(s, P ).
So Gi(P ) is the i-th elementary symmetric polynomial of 1/γ1, . . . , 1/γn and,
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in particular, we have

(5.4) vol(P ) = Gn(P ) =

n
∏

i=1

1

γi(P )
and Gn−1(P ) =

n
∑

j=1

∏

i6=j

1

γi(P )
.

For bounds and further properties of the roots of the Ehrhart polynomial
we refer to [8, 30]. Here we are interested in relations between γi(P ) and
Minkowski’s successive minima. For a lattice boxes Q as considered in (5.3) we
obviously have

λi(Q)

2
=

1

2 αi
= γi(Q), 1 ≤ i ≤ n.

In terms of the roots of the Ehrhart polynomial (cf. (5.4)) we can rewrite
Minkowski’s second Theorem 1.2 for P ∈ Pn ∩ Kn

0 as

(5.5)

(

n
∏

i=1

λi(P )

2

)1/n

≤
(

n
∏

i=1

γi(P )

)1/n

≤ n!1/n

(

n
∏

i=1

λi(P )

2

)1/n

.

These inequalities between the geometric mean of the successive minima and
the roots of the Ehrhart polynomial lead naturally to the question of further
inequalities among the elementary symmetric functions of λi(P )/2 and γi(P ).
so far the only other known relation is between the arithmetic means [30]

Theorem 5.3 (H.,Schürmann,W.). Let P ∈ Pn ∩ Kn
0 . Then

(5.6)
1

n

(

n
∑

i=1

γi(P )

)

≤ 1

n

(

n
∑

i=1

λi(P )

2

)

and the bound is tight.

An interesting feature of this inequality is the fact that it is tight for the cube
Cn as well as for the cross polytope C∗

n. However, there does not seem to be a
lower bound on the arithmetic mean of γi(P ) by the arithmetic mean of λi(P )
(cf. [30]). In terms of the coefficients of the Ehrhart polynomial, Theorem 5.3
is equivalent to the more geometric statement (cf. (5.4))

(5.7)
Gn−1(P )

vol(P )
≤ 1

2

n
∑

i=1

λi(P ).

In comparison with (3.2) we see that the ratio of surface area to volume can be
bounded from below by the successive minima whereas the ratio of the lattice
surface area to the volume can be bounded form above. From (5.7) and the
upper bound in (1.3) we get

Corollary 5.4. Let P ∈ Pn ∩ Kn
0 . Then

Gn−1(P ) ≤
n
∑

j=1

∏

i6=j

2

λi(P )
.
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This corollary brings us back to the polynomial

L(µ K) =

n
∏

i=1

(

2

λi(K)
µ + 1

)

introduced in (4.2). Denoting the coefficients of this polynomial by Li(K)
the right hand side in the corollary above is exactly Ln−1(P ) and the leading
coefficient is equal to

∏n
i=1 2/λi(P ). Thus, by the upper bound in Minkowski’s

second theorem and Corollary 5.4 we obtain for P ∈ Pn∩Kn
0 the two inequalities

Gn(P ) ≤ Ln(P ) and Gn−1(P ) ≤ Ln−1(P ).

These two relations also support the conjectured inequality G(K) ≤ L(K) for
K ∈ Kn

0 which follows from the stronger Conjecture 4.3. Observe, that it is
enough to prove G(K) ≤ L(K) for 0-symmetric lattice polytopes. It seems to
be quite unlikely, however, to prove G(P ) ≤ L(P ) via the associate polynomials
in a coefficient-wise way. Nevertheless for special polytopes this approach may
work. For instance, let P be a 0-symmetric n-dimensional lattice polytope with
int(P ) ∩ Z

n = {0} and thus λi(P ) = 1, 1 ≤ i ≤ n. Then Li(P ) =
(n

i

)

2i and
Gi(P ) ≤ Li(P ) is equivalent to a conjecture of Wills [56]

Conjecture 5.5 (W.). Let P ∈ Pn ∩ Kn
0 such that int(P ) ∩ Z

n = {0}. Then

Gi(P ) ≤
(

n

i

)

2i, 1 ≤ i ≤ n.

Of course, the case i = n follows from Minkowski’s first Theorem 1.1.

6. Best simultaneous Diophantine approximations

Here we want to extend Minkowski’s theorems on successive minima to pe-
riodic lattices. As in the previous sections we will present the results only with
respect to the integral lattice, but as before they can easily be generalised to
aribitrary lattices. For α ∈ R

n and an integer Q ∈ N≥0 we set

Z
n(α, Q) = Z

n ∪ (α + Z
n) + (2 α + Z

n) ∪ · · · ∪ (Q α + Z
n),

where we always assume that kα /∈ Z
n for 1 ≤ k ≤ Q. In order to allow the

case α ∈ Λ we admit Q = 0. Z
n(α, Q) is called a periodic lattice. Next we

define for K ∈ Kn
0 and 1 ≤ i ≤ n

λi(K, Z
n(α, Q)) = min{λ > 0 : dim(λ K ∩ Z

n(α, Q)) ≥ i}.
Obviously, for Q = 0 we just have Minkowski’s successive minima introduced
in Section 1. Denoting by |x|K = min{λ ≥ 0 : x ∈ λ K} the norm of x ∈ R

n

induced by K, the first successive minimum of the series above can be expressed
by

λ1(K, Z
n(α, Q)) = min{|qα − z|K > 0 : q ∈ {0, . . . , Q}, z ∈ Z

n}.
So it measures the quality of a best approximation of α by a rational vector
whose common denominator is bounded by Q. This functional has been studied
from various respects. For instance, for n = 1 and based on continued fractions,
Klein [34] gave a geometric interpretation of such a “best approximation point”
as a vertex of an associated 2-dimensional Klein polyhedron. Davenport and
Mahler [17] proved that there exist infinitely many points (q, z)ᵀ ∈ Z3, z ∈ Z2,
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such that |qα − z|2B2 ≤ (2/
√

23)/q and the constant on the right hand side is
best possible. The first who embedded λ1(K, Zn(α, Q)) in a series of functionals
were W.B. Jurkat [33] and W. Kratz [35]. Their functionals are closely linked
to the λi(K, Zn(α, Q)) but defined in a space of dimension n + 1.

In order to present Minkowski-type inequalities for the λi(K, Zn(α, Q)) we
also need the notation of the density of a densest (not necessarily lattice) pack-
ing of K which will be denoted by δ∗(K) (cf [27, pp. 223]). Then we have the
following analogues to Minkowski’s theorems [2]

Theorem 6.1 (Aliev, H.). Let K ∈ Kn
0 , α ∈ Rn and Q ∈ N≥0 such that kα /∈ Λ

for 1 ≤ k ≤ Q. Then with λi = λi(K, Zn(α, Q)) we have

i) (λ1)
nvol(K) ≤ δ∗(K) 2n frac1Q + 1,

ii) γ(α, Q, n)
2n

n!
≤ λ1 · . . . · λn vol(K) ≤ 2n 1

Q + 1
,

where γ(α, Q, n) is a certain constant depending on α, Q and n.

Inequalities of that type give us information on the quality of the simulta-
neous approximation of a vector by a system of linearly independent rational
vectors whose common denominators are bounded.

For details on the constant γ(α, Q, n) in the lower bound of Theorem 6.1 ii)
we refer to the paper [2], but we want to remark that in the case (Q+1)α ∈ Z

n,
i.e., Z

n(α, Q) is a lattice, we have γ(α, Q, n) ≥ 1/(Q + 1). Thus Theorem 6.1
may be regarded as an extension of Minkowski’s inequalities (1.2) and (1.3) to
periodic lattices. Actually, the first inequality i) looks quite similar to (2.1),
but since the inequality is valid for a more general structure than lattices we
have to replace the density of densest lattice packing in (2.1) by δ?(K).

If K = Cn then | · |K is the maximum norm and Theorem 6.1 i) says that for
any α ∈ R

n there exists a z ∈ Z
n and q ∈ {1, . . . , Q} such that

∣

∣

∣

∣

αi −
zi

q

∣

∣

∣

∣

<
Q−1/n

q
, 1 ≤ i ≤ n.

This is Dirichlet’s classical theorem on simultaneous Diophantine approxima-
tion.

Quite recently Aliev and Gruber [1] also gave a lower estimate for the quantity
λ1(K, Z

n(α, Q)) which, with the notation of Theorem 6.1, can be formulated as

Theorem 6.2 (Aliev, Gruber). For every ε > 0 there exists an α ∈ Rn and

Q ∈ N such that

(λ1)
n vol(K) > δ(K) 2n 1

Q
.

In fact, they proved this theorem not only for 0-symmetric convex bodies,
but for any bounded star body K.
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[2] I. Aliev and M. Henk, Successive minima and best simultaneous diophantine approxima-
tions, Mh. Math. 147 (2006), no. 2, 95–101.

[3] R. P. Bambah, A. C. Woods, and H. Zassenhaus, Three proofs of Minkowski’s second
inequality in the geometry of numbers, J. Austral. Math. Soc. 5 (1965), 453–462.

[4] R.P. Bambah, V.C. Dumir, and R.J. Hans-Gill, Diophantine inequalities, Proc. Natl.
Acad. Sci. India, Sect. A 68 (1998), no. 2, 101–114, corrigendum ibid. 69, No.1, 103
(1999).

[5] A. Barvinok, Computing the Ehrhart polynomial of a convex lattice polytope, Discrete
Comput. Geom. 12 (1994), no. 1, 35–48.

[6] , A polynomial time algorithm for counting integral points in polyhedra when the
dimension is fixed, Math. Oper. Res. 19 (1994), 769–779.

[7] A. Barvinok and J.E. Pommersheim, An algorithmic theory of lattice points in polyhedra,
New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), Math. Sci. Res.
Inst. Publ., vol. 38, 1994, pp. 91–147.

[8] M. Beck, J. De Loera, M. Develin, J. Pfeifle, and R.P. Stanley, Coefficients and roots of
Ehrhart polynomials, Contemp. Math. 374 (2005), 15–36.

[9] M. Beck and D. Pixton, The Ehrhart polynomial of the Birkhoff polytope, Discrete Com-
put. Geom. 30 (2003), no. 4, 623–637.

[10] U. Betke and P. Gritzmann, An application of valuation theory to two problems of discrete
geometry, Discrete Math. 58 (1986), 81–85.

[11] U. Betke, M. Henk, and J.M. Wills, Successive-minima-type inequalities, Discrete Com-
put. Geom. 9 (1993), no. 2, 165–175.

[12] U. Betke and M. Kneser, Zerlegungen und Bewertungen von Gitterpolytopen, J. Reine
Angew. Math. 358 (1985), 202–208.

[13] J. Bochnak and W. Kucharz, On successive minima of indefinite quadratic forms, http:
//www.uni-regensburg.de/Fakultaeten/nat_Fak_I/RAAG/preprints/0178.%html.

[14] J.G. van der Corput, Verallgemeinerung einer Mordellschen Beweismethode in der Ge-
ometrie der Zahlen, Acta Airithm. 1 (1935), 62–66.

[15] H. Davenport, Minkowski’s inequality for the minima associated with a convex body, Quar-
terly J. Math. 10 (1939), 119–121.

[16] , The product of n homogeneous linear forms, Indag. Math. 8 (1946), 525–531.
[17] H. Davenport and K. Mahler, Simultaneous diophantine approximation, Duke Math. J.

13 (1946), 105–111.
[18] J. De Loera, D. Haws, R. Hemmecke, and P. Huggins, A user’s guide for latte v1.1,

software package latte , 2004, available at http://www.math.ucdavis.edu/~latte.
[19] J. De Loera, R. Hemmecke, J. Tauzer, and R. Yoshida, Effective lattice point counting in

rational convex polytopes, J. Symb. Comput. 38 (2004), no. 4, 1273–1302.
[20] R. Diaz and S. Robins, The Ehrhart polynomial of a lattice polytope, Ann. of Math. 145

(1997), no. 3, 503–518, Erratum in 146:1 (1997), 237.
[21] V.C. Dumir and R.J. Hans-Gill, The second minimum for positive values of non-

homogeneous ternary quadratic forms of type (1, 2)., Ranchi Univ. Math. J. 28 (1997),
65–75.

[22] E. Ehrhart, Sur les ovales et les ovoides, C. R. Acad. Sci. Paris 258 (1955), 573–575.
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